
Good afternoon everyone, thanks for having
me.
This may come as a surprise to you, but...

End-to-End Django on
Kubernetes
Frank Wiles
@fwiles

© REVSYS, 2017

I am not Josh Berkus
But the more I thought about it, the more I
realized how you could be confused...

I am not Josh
Berkus

© REVSYS, 2017

I mean Josh's name is on the program
We both have beards
We both like Django, PostgreSQL, and
Kubernetes
We both even have the same damn
glasses
But we also have some differences

© REVSYS, 2017

Over here on the left we have the average PostgreSQL
user's knowledge.
I know a little bit more, but then over here on the right it's
clear Josh knows a ton more than me.
You're probably asking yourself what the hell this has to do
with anything, but
there is one final important difference that pertains to this
talk.

© REVSYS, 2017

My backing is working pretty good today (stretch)

Back works ok

© REVSYS, 2017

Josh's, not so much.
Which is why I'm up here to talk to you about Django and
Kubernetes.
 See, Josh managed to hurt his back last week while
making the awesome speaker gifts for DjangoCon.
 And the DjangoCon team asked me to fill in for him.
Luckily, I've been using Django on Kubernetes with clients
for awhile so I didn't even need to change the topic!

Not so much

© REVSYS, 2017

Speaking of the topic, we should probably get to that.
Kubernetes is arguably
the best and most popular container orchestration system
in use today. Before
we dive into things too deeply we need to get some
terminology straight.

© REVSYS, 2017

If you picked number 3 you're correct!

First off the name, Kubernetes
means...

1. Greek for ship captain
2. Google learned it's lesson

naming things after Go
3. All of the above

© REVSYS, 2017

The are great at running our application process
and packaging up all of it's dependencies
but on their own, they can be difficult to work with

Containers are great but...

© REVSYS, 2017

Outside of a single container, things get messy. So this is why container orchestration
services like docker-compose, docker swarm, mesos, AWS Container Service, and
kubernetes exist

Not exactly user friendly

$ docker run \
-v /Users/frank/work/data/project-1/data/:/data \
-v /Users/frank/work/data/project-1/configs:/etc/whatever.d \
-v /Users/frank/work/data/project-1/other:/etc/something-else.d \
...
-p 80:8000 --rm project-1:v1.7.3

© REVSYS, 2017

What is container orchestration anyway?

Event loops are used by the Kubernetes
components to reconcile things between the local
machines and the desired cluster state.
— Kelsey Hightower

© REVSYS, 2017

We simply define how we want things to look. Which apps are deployed and who they can
communicate with and Kubernetes works to make that vision a reality for us. I'm not going
to lie to you and say Kubernetes is super easy to learn. It's a big complicated system.

It's really a control loop

In applications of robotics and automation, a control
loop is a non-terminating loop that regulates the
state of the system. In Kubernetes, a controller is a
control loop that watches the shared state of the
cluster through the apiserver and makes changes
attempting to move the current state towards the
desired state.
— Kubernetes Documentation
© REVSYS, 2017

It's a bear. A big scary bear. We're not going to learn all about it in 40
minutes, but my goal is to change your impression of it from this to...

© REVSYS, 2017

..this

© REVSYS, 2017

It's complicated, but one of the things I got tripped up by early on
was all of the new terminology so let's dig deeper into that now

Terminology

© REVSYS, 2017

© REVSYS, 2017

© REVSYS, 2017

Authentication, authorization, and access to the cluster can be as easy or
as
complicated as you want to make it. Today we're going with the easy way,
so every operator of your cluster will just share a single .kubeconfig file.

Authentication
~/.kube/config

© REVSYS, 2017

Access your cluster by proxy

$ kubectl proxy
Now http://localhost:8001/ is proxied to your
cluster's API

© REVSYS, 2017

Dashboard

$ kubectl proxy
Travel to http://localhost:8001/ui

© REVSYS, 2017

namespace.yaml

apiVersion: v1
kind: Namespace
metadata:
 name: revsys-rocks

To create it in the cluster

kubectl apply -f namespace.yaml
© REVSYS, 2017

Deployments

© REVSYS, 2017

deployment.yaml

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: revsys-rocks
 namespace: revsys-rocks
spec:
 replicas: 2
 template:
 metadata:
 labels:
 app: revsys-rocks
 spec:
 containers:
 - image: gcr.io/revsys-150116/revsys-rocks
 name: revsys-rocks
 ports:
 - containerPort: 80

© REVSYS, 2017

To create it in the cluster

kubectl apply -f deployment.yaml

© REVSYS, 2017

Services

© REVSYS, 2017

service.yaml

apiVersion: v1
kind: Service
metadata:
 name: revsys-rocks
 namespace: revsys-rocks
spec:
 ports:
 - port: 80
 targetPort: 80
 protocol: TCP
 selector:
 app: revsys-rocks

© REVSYS, 2017

Ingress Controllers map the outside world into our services
running in our cluster

Ingress Controllers

© REVSYS, 2017

A quick aside, I'm about to show you an ingress controller that uses kube-lego, so I
should explain what it is. kube-lego is a controller that handles Let's Encrypt certificates
for us.

kube-lego
https://github.com/jetstack/kube-lego

© REVSYS, 2017

ingress-tls.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: revsys-rocks
 namespace: revsys-rocks
 annotations:
 kubernetes.io/tls-acme: "true"
 kubernetes.io/ingress.class: "nginx"
spec:
 tls:
 - hosts:
 - revsys.rocks
 secretName: revsys-rocks-tls
 rules:
 - host: revsys.rocks
 http:
 paths:
 - path: /
 backend:
 serviceName: revsys-rocks
 servicePort: 80

© REVSYS, 2017

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: revsys-rocks
 namespace: revsys-rocks
 annotations:
 kubernetes.io/tls-acme: "true"
 kubernetes.io/ingress.class: "nginx"
spec:
 tls:
 - hosts:
 - revsys.rocks
 secretName: revsys-rocks-tls
 rules:
 - host: revsys.rocks
 http:
 paths:
 - path: /
 backend:
 serviceName: revsys-rocks
 servicePort: 80

© REVSYS, 2017

When we create deployments, all of the containers in a deployment form a pod. Pods are sets of containers that are
deployed together on the same host. This can be useful for many scenarios when containers need to work closely
together. However, in my examples today all of our deployments have a single container. But you need to know about
the concept to really understand the docs and various tutorials you'll find on Kubernetes

Pods

© REVSYS, 2017

So the high level view is...

1. The masters run the API, store cluster state, and
schedule deployments onto the nodes

2. Nodes run pods which provide services inside the
cluster

3. Ingress controllers map the external world to
internal services

© REVSYS, 2017

Running kube in the real
world

© REVSYS, 2017

There is also kubespray, an alternative to kops, which a few
friends have mentioned using, but we haven't used it ourselves.

Creating a cluster

—kops
—Google Container Engine
—minikube

© REVSYS, 2017

There are several different ways to pass in configuration
information into your containers

Configuration

© REVSYS, 2017

Environment Variables

© REVSYS, 2017

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: revsys
 namespace: revsys-website
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: revsys
 spec:
 containers:
 - image: registry.revsys.com/revsys:v1.3.8
 imagePullPolicy: Always
 name: revsys
 env:
 - name: DATABASE_NAME
 value: "revsys.com"
 - name: DJANGO_SETTINGS_MODULE
 value: "revsys.settings.dev"
 ports:
 - containerPort: 80
 imagePullSecrets:
 - name: registry.revsys.com

© REVSYS, 2017

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: revsys
 namespace: revsys-website
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: revsys
 spec:
 containers:
 - image: registry.revsys.com/revsys:v1.3.8
 imagePullPolicy: Always
 name: revsys
 env:
 - name: DATABASE_NAME
 value: "revsys.com"
 - name: DJANGO_SETTINGS_MODULE
 value: "revsys.settings.dev"
 ports:
 - containerPort: 80
 imagePullSecrets:
 - name: registry.revsys.com

© REVSYS, 2017

Config maps allow us to map sets of "variable" like things, whole files, or entire
directories of configuration information into our Pods. Examples here don't map all that
well to slides, but check out the documentation for more information. You can read up
on them in the docs, but you can do things like a nginx config file and have it
presented as an actual file in your container.

ConfigMaps

© REVSYS, 2017

Kubernetes supports creating, defining, and managing "secrets". The obvious examples are API keys and database
passwords. We could put these values in as environment variables directly, but that exposes are super secret
information to more people than necessary. Kube let's us pull a secret in as an environment variable however so...

Secrets

© REVSYS, 2017

So this is how we can easily use secrets, but how secret are they? Well right now they
aren't that secure. They're stored as base64 on the cluster, but kubernetes is moving to
support truly encrypted secrets in the next release.

env:
 - name: DJANGO_SETTINGS_MODULE
 value: "projects.settings.prod"
 - name: DATABASE_PASSWORD
 valueFrom:
 secretKeyRef:
 name: revsys-projects-db-password
 key: password

© REVSYS, 2017

Since we never really know where things are running we absolutely need centralized logging. We
have had luck with the EFK stack, specifically ElasticSearch, Fluentd or fluent-bit, and Kibana for
this. Google's GCE automatically gathers up your container logs and makes them searchable for you.

Centralized Logs are a
Must

© REVSYS, 2017

jslog4kube

https://github.com/revsys/jslog4kube

© REVSYS, 2017

Data Persistence

© REVSYS, 2017

Persistent Volumes

© REVSYS, 2017

Off Cluster Storage

© REVSYS, 2017

Patroni is a system for doing templated HA deployments of Postgres using something like
Zookeeper, Consul or etcd. We haven't used it ourselves, but have heard good things so
it's definitely worth investigating.

What about PostgreSQL?

Take a look at Patroni.

https://github.com/zalando/patroni

© REVSYS, 2017

© REVSYS, 2017

helm
Package Management for
Kubernetes
https://github.com/kubernetes/helm

© REVSYS, 2017

Using the API with Python

© REVSYS, 2017

from kubernetes import client, config

config.load_kube_config()

v1 = client.CoreV1Api()
print("Listing pods with their IPs:")
ret = v1.list_pod_for_all_namespaces(watch=False)
for i in ret.items:
 print("{}\t{}\t{}".format(
 i.status.pod_ip,
 i.metadata.namespace,
 i.metadata.name,
))

© REVSYS, 2017

Output

(kube-demo) [kube-demo frank]$ python all-pods.py
Listing pods with their IPs:
10.0.0.3 grove-static grove-static-1870186613-3bzr8
10.0.1.4 grove-static grove-static-1870186613-gh2gm
10.0.2.150 hqcc hqcc-3762067920-spm6t
10.0.1.10 hqcc varnish-3334876750-38mdh
10.0.1.14 kssp kssp-166829002-pjn14
10.0.2.145 kssp varnish-3334876750-r6m33
10.0.1.3 kube-lego kube-lego-3323932148-jpbf0
10.0.0.60 kube-system fluentd-gcp-v2.0-dzv4s
10.0.2.161 kube-system fluentd-gcp-v2.0-h5dc2
10.0.1.21 kube-system fluentd-gcp-v2.0-wn8k9
10.0.0.6 kube-system heapster-v1.3.0-1288166888-dq8v7
10.0.2.160 kube-system kube-dns-3664836949-78xcq
10.0.1.20 kube-system kube-dns-autoscaler-2667913178-39qxd
10.128.0.3 kube-system kube-proxy-gke-revsys-production-default-pool-4839b693-0dmc
10.128.0.4 kube-system kube-proxy-gke-revsys-production-default-pool-4839b693-kagb
10.128.0.2 kube-system kube-proxy-gke-revsys-production-default-pool-4839b693-u53t
10.0.0.4 kube-system kubernetes-dashboard-2917854236-2pjnm
10.0.0.9 kube-system l7-default-backend-1044750973-1fkjm
10.0.2.84 mentor-match mentor-match-960480193-7s0fn
10.0.1.5 nginx-ingress default-http-backend-3981334675-ptpz8
10.0.0.8 nginx-ingress nginx-3757477279-z23xd
...

© REVSYS, 2017

Why would you want to create your own controllers? Well kubernetes is great and flexible, but it doesn't
handle everything you need all of the time. Using your own annotations and a bit of code to watch for
them you can take actions inside and outside of the cluster when things change or need to change.

Create your own
operators

© REVSYS, 2017

Examples of operators you could build

1. Slack alerts when new deployments are created
or when pods come up and down

2. Watch for your Django apps and automatically
back up all databases in use

3. Orchestrate more complicated scenarios that k8s
doesn't support directly, for example swapping
out a service for another after a long running
setup period.

© REVSYS, 2017

Questions?

Twitter: @fwiles
Email: frank@revsys.com

© REVSYS, 2017

